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Decay of Correlations in the Regular Lorentz Gas 
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The regular Lorentz gas on triangular lattice is studied numerically and 
analytically. The velocity correlation function is shown to decay exponentially in 
the number of collisions with a decay rate which vanishes as the scatterers 
approach close packing. The crossover to power law decay at close packing is 
described by a scaling function. 
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1. I N T R O D U C T I O N  

In this note we present a numerical study of the decay of the velocity 
correlation function in the regular Lorentz model and provide a simple 
analysis of our results. In the Lorentz model a single point particle obeying 
classical dynamics moves in an array of immobile scatterers. In the present 
study the particle moves on the plane and the scatterers are disks on a 
triangular lattice as shown in Fig. 1. The disks have unit radius and the 
particles move with constant velocity and unit speed between elastic 
collisions with the disks. The paramater  W measures the distance of closest 
approach between neighboring scatterers and completely characterizes the 
system. We study W in the range 0 < W <  W1, where W~ = 0.3094. In this 
range the particle moves in an infinite region but has a finite horizon in the 
sense that the maximum free path is bounded from above. When W < 0 ,  
the particle moves in a finite region and the model is known as a billiard 
model whereas when W >  W~ there is an infinite horizon. 

Regular Lorentz models play an important  role in our understanding 
of transport  phenomena. They are simple enough to admit rigorous 
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Fig. 1. 
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Scatterers in the regular Lorentz gas have radius one and lie on a triangular lattice 
with lattice constant 2 + W. 

mathematical analysis and complex enough to display realistic transport 
properties. In recent years there has been considerable interest in these 
models. Bunim0vich and Sinai (1) showed that the regular Lorentz model 
described above for 0 < W <  W1 is a K-system and that the average particle 
motion is diffusive. Machta and Zwanzig (2) showed that this diffusive 
motion can be described for small W as a random walk between trapping 
regions formed between three disks. Machta (3) studied the W =  0 billiard, 
and Bouchaud and Le Doussal (4~ studied the equivalent billiard on a 
square lattice. In both cases the velocity correlation function (VCF) was 
found to decay like 1/n, where n is the number of collisions. In Ref. 3 this 
slow decay of correlations was attributed to particle motion near the points 
of tangential contact of the disks. Power law decay of the VCF also occurs 
in the regular Lorentz model when the horizon is infinite ~5~ ( W >  Wx for 
the triangular lattice and for any positive separation between the disks for 
the square lattice) and, in general, in chaotic dynamical systems with 
integrable segments. (6) The VCF as a function of time rather than collision 
number has also been investigated for regular Lorentz models. ~2'4'7) In cases 
where the free paths of the particle may be either arbitrarily large or 
arbitrarily small, the VCF as a function of collision number and time 
behave in qualitatively different ways. We emphasize that the present dis- 
cussion is concerned solely with the VCF as a function of collision number. 

Our work is motivated by the rigorous analysis of the Lorentz model 
given by Bunimovich and Sinai, (1) which showed that the decay of the 
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Fig. 2. An example of a particle trajectory in the vertex between two scatterers. 

velocity correlation function, C(n), as a function of the number of collisions 
is bounded, for large, n, by 

IC(n) l  <~ e -n~, n ~ ~ 1) 

where the exponent )~ lies in the range 0 < o? < I. Bunimovich and Sinai 
were unable to establish the value of ~,. Our numerical work and qualitative 
analysis supports the hypothesis that the VCF decays as an ordinary 
exponential (7 = 1) with decay rate 2 = W + ( W 2 + 2 W) 1/2. We also find a 
crossover function which shows how the VCF goes over to power law 
behavior as W--, 0. Our  results are in contrast with numerical studies ~s) of 
the related diamond billiard in which stretched exponential decay (7 < 1 )  
apparently holds. The diamond billiard is obtained from the regular 
Lorentz gas on a square lattice when W < 0 .  Stretched exponential 
behavior of the VCF also appears to hold for intermediate times in the 
Lorentz gas on a square latticeJ 4~ 

The outline of the paper  is as follows. In Section 2 we give a simple 
analysis of the VCF. This analysis is based on the hypothesis that the large 
n behavior of the VCF is dominated by long sequences of collisions of the 
kind shown in Fig. 2. In Section 3 we present numerical results for the 
VCF. The paper closes with a discussion. 

2. A N A L Y S I S  OF THE V E L O C I T Y  C O R R E L A T I O N  F U N C T I O N  

The analysis of the VCF is based on the idea that its large n behavior 
is dominated by long sequences of collisions in a vertex. By vertex we mean 
any of the regions of phase space in which the position of the particle is 
near the line connecting the centers of two neighboring disks and the 
velocity is nearly parallel to this line. A sequence of collisions in a vertex is 
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shown in Fig. 2. In each vertex there is a period two orbit which, like all 
periodic orbits in the Lorentz gas, is unstable. However, it is our 
hypothesis that the period two orbit in the vertex is less unstable than all 
other periodic orbits. This is because it has the shortest free paths and thus 
trajectories near this orbit are defocused the least by the negative curvature 
of the scatterers. Given this hypothesis we argue that the asymptotic 
behavior of the VCF is exponential with decay rate given by the largest 
eigenvalue of the linearized motion in the vertex. We note here that this 
reasoning does not apply in the presence of an infinite horizon when long 
sequences of nearly tangential collision are possible. 

Consider a sequence of m collisions which remain in a single vertex. At 
each collision the velocity is nearly reversed so that the contribution of this 
sequence of collisions to C(n) alternates in sign and is of order one for 
n ~< rn. In order to estimate the contribution of all trajectories in a vertex to 
C(n) we need to determine the phase space available for sequences of n or 
more collisions in a vertex. This is done qualitatively below and quan- 
titatively in the Appendix. 

Each collision in a vertex can be described by two angles as shown in 
Fig. 3. 0m measures the angle that the velocity makes with the normal at 
the point of collision and c~ m measures the angle between the point of 
collision and the line connecting the centers of the two disks forming the 
vertex. Elementary geometric considerations yield the following exact 
relation between the ruth and (m + 1)th collision in a vertex: 

s in  0~m+ 1--  s in  ~Zm = (2 + W--cOS~m+~--coS:Zm) tan(Om+~m) (2) 

Ore+ 1 - - O m = O ~ m +  l--O~rn (3) 

For 0m and c~,,, sufficiently small this mapping can be linearized yielding 

Ore+ 1 - -  0 m = 2 + W  0 m (4) 

I 
w 

T 

Fig. 3. Angles 0,, and e,~ describe the position and velocity of the particle at each collision. 



Decay of Correlations 953 

We can describe the motion in the vertex in terms of the normal coor- 
dinates, q(+) and q( ) of the linear map. In the linear regime and for a 
large number, n, of collisions these coordinates behave like 

q(+) = q(0 -+) exp(2(-+)n) 

where 2 (+) are the eigenvalues of the matrix in Eq. (4), 

2(+)= W+_ (W2 + 2W)I/2 

(5) 

(6) 

Note that 2(+)>0,  2 ( ~<0 and that both vanish as W ~ 0 .  In terms of the 
normal coordinates, the phase space available for n or more collisions in a 
vertex is thus independent of n in the q(-~ direction but shrinks exponen- 
tially in the q(+~ direction. Thus our prediction for the large n behavior of 
the VCF is 

C(n) , ,~( -1)nA exp( -2n)  (0< W <  W1) (7) 

where A is a constant and hereafter we take 2 = 2 (+). 
As discussed in detail by Bouchaud and Le Doussal, (9) the limit W--* 0 

corresponds to a continuous phase transition. As the transition is 
approached the correlation number, 1/2, diverges and C(n) decays very 
slowly. For W = 0  the linearized motion is marginally stable and cubic 
nonlinearities in the map, Eqs. (2) and (3), must be included for a correct 
treatment of the motion in the vertex. As shown in Ref. 3, this leads to 
power law decay of the VCF, 

C ( n ) ~ ( - 1 ) " D / n  ( W = 0 )  (8) 

Trajectories in a vertex cannot distinguish whether W is small or 
exactly zero unless they probe very small values of c~. Since this can happen 
only for the longest trajectories in a vertex we expect an intermediate n 
power law decay for the VCF. This line of reasoning leads us to consider a 
scaling form for the large-n behavior of the VCF which depends on the 
single scale 1/2. The scaling form 

C(n ) ~ ( - 1 )n f (n2 )/n (9) 

reproduces power law decay for W = 0  and crosses over to exponential 
decay for W >  0 if 

f ( x ) ~ D  x ~ O  (10) 

and 

f ( x ) ~ C x e  x x--* o~ (11) 
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An analytic estimate for D was obtained in Ref. 3 and, using essentially the 
same method, an estimate for C is made in the Appendix. The prediction is 
that C=4/zr and D=0.7295. The scaling form, Eq. (9), can also be 
obtained using the renormalization group approach of Ref. 9. 

3. C O M P U T E R  E X P E R I M E N T  

We carried out a numerical simulation of the Lorentz gas on a 
triangular lattice using a CYBER 205 vector processor. We select a large 
number of initial points (5 x 106-3.2x 10 7) chosen from the invariant 
measure, d~ cos 0 dO. From each of these points, trajectories of length 30 to 
50 were computed in single precision (16-digit accuracy) and the velocity 
correlation function was obtained by averaging. The vector architecture of 
the CYBER 205 was utilized by creating a vector of 10 4 points in phase 
space and computing trajectories originating from them in parallel. 

The VCF was calculated for six different values of W (0, 0.0001, 
0.0005, 0.001, 0.01, and 0.1) and plotted in Figs. 4a and 4b for W=0.1 and 
W= 0.01, respectively. The solid line in these figures corresponds to the 
predicted asymptotic decay of the VCF characterized by an exponential 
with decay rate 2 and prefactor ( -  1)n24/m The theory is both qualitatively 
and quantitatively in good agreement with the simulation for these values 
of W. 

Figure 5 shows data for all six values of W. Guided by the scaling 
form of Eq.(9) we plot ( -1)nnC(n)  vs. 2n. Since the scaling form is 
expected to hold only in the regime where nonvertex contributions to the 
VCF have decayed away, Fig. 5 shows only those points where n is greater 
than a value determined by visual inspection for each W. The circle on the 
vertical axis at 0.675 corresponds to the average of ( - 1 )  n nC(n) for W= 0 
and 50 ~< n ~< 50. The solid line is the predicted large n2 behavior of the 
scaling function [see Eqs. (11) and (A8)] and the tick mark on the vertical 
axis at 0.73 is the predicted (3) n2 --* 0 limit of the scaling function. The data 
for all six values of W do indeed seem to lie on a single curve with the 
predicted large n2 properties. On the other hand, for n2--, 0 the observed 
scaling function is significantly below the theoretical limit, D--0.73. It is 
unclear whether this is the result of an inability to probe the asymptotic 
regime in the computer experiment or whether it indicates that there are 
contributions to the asymptotic VCF not contained in the theory. For  
example, the present theory does not include the effect of correlations 
between successive visits to a vertex. 

The error bars in Figs. 4a and 4b show plus and minus one standard 
deviation due to Monte Carlo sample size and are absent if this range is 
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Fig. 4. The velocity correlation function vs. collision number for two values of W, 
(a) W =  0.1 and (b} W =  0.01. The solid line is the theoretical prediction for the asymptotic 
behavior of the VCF. 
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Fig. 5. The velocity correlation function vs. collision number plotted in scaled coordinates. 
Data from six values of W are shown. The tick mark at 0.73 is the theoretical limit as n2 ~ 0 
and the solid is the large n2 prediction for the scaled VCF. 

smaller than the data symbol. The error due to the finite number, N, of 
points sampled from phase space is easily estimated using the central limit 
theorem. In the computer experiment C(n) is a normalized sum over the 
cosine of the angle ~b, between ~n and 3o. For  large n, this angle is a random 
variable which is nearly uniformly distributed in the interval 0 to 27c so that 
cos(C) has variance 1/2 and the standard deviation of C(n) is (1/2N) 1/2. 

In addition to finite N errors there are round-off errors which depend 
upon location in phase space. Throughout  most of phase space the map is 
strongly chaotic leading to a rapid divergence of nearby trajectories. We 
find that for typical initial conditions a trajectory can be extended for 
about 30 collisions, reversed, and then brought back to its origin. Much 
beyond 30 collisions the reversed trajectory is markedly different from the 
forward trajectory. On the other hand, for trajectories which start in the 
vertex the maximum reversal number is higher owing to the linearity of the 
map there. A more subtle difficulty stems from the algorithm itself. When 
the velocity is parallel to any of the nearest neighbor lattice vectors the 
algorithm fails and near these directions it loses accuracy. The period two 
orbit in the vertex is an example where the algorithm fails, and it is 
precisely trajectories near this orbit which lead to the long time behavior of 
the VCF. Fortunately, for 16-digit precision, the region in phase space 
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where this error is large is very much smaller than the values of the VCF. 
Our belief is that the net effect of the round-off errors is very small and that 
the dominant source of error in the simulation is the finite size of the 
Monte Carlo sample. 

4. D I S C U S S I O N  

It is clear from the figures that the simple theory based on collisions in 
a vertex captures the main features of the observed decay of the VCF for a 
wide range of W and n. The theory and simulation together with Ref. 3 sup- 
port the view that the asymptotic decay of the VCF is exponential for 
0 <  W <  W~ and crosses over to a power law (l/n) for W=0.  This 
crossover is characterized by a scaling function with the single scale 1/2. 
We can sharpen this picture in the form of the following two hypotheses: 

(1) There exists a nontrivial function, f(x), which is the limit of 
(-1)'nC(n) as n ~  oe and W ~ 0  holding x=n2 fixed. 

(2) The limit as n ~  of (-1)'C(n)exp(2n) exists and is non- 
vanishing. 

The simulation does not rule out the possibility that the true 
asymptotic behavior of the VCF for 0 < W < W is quasiexponential as per- 
mitted by the rigorous theory. (1) However, it is clear from the data that a 
quasiexponential component to the VCF must either have a small prefactor 
or an exponent [2 of Eq. (1)J close to one. It is curious that quasiexponen- 
fial decay has been found in other similar billiard models.(4'8) 
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A P P E N D I X  

In this appendix we estimate the value of the prefactor C in the scaling 
function, Eq. (11). The method used is very similar to that employed in 
Ref. 3. Let C*(n) correspond to the contribution of the VCF from collision 
sequences which remain near a single vertex. For large n, C*(n) and C(n) 
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are presumed to be equal. We can write C*(n) as an integral over phase 
space 

( .  

C*(n) = (3/2~) J- cos 0o dOo dc% ( - 1) n cos [(0n - %) - ( - 1 )n(0 o - c%)] 

( a l )  

In this expression the slash through the integral sign indicates that the 
integration is over the portion of phase space for which the sequence of 
collisions from 0 to n remains in a single vertex. We evaluate this integral 
for small W and large n and use the linear approximation, Eq. (4), to find 
a n and 0n. The integral (A1) is most easily carried out in terms of the nor- 
mal coordinates, ~n-(+) and q(~-) of the linear map, 

q~-+ ~ = (1/2)[% +_ ( W/( W +  2))~/2 0hi (A2) 

Using the fact that q(~ / decays exponentially in n for large n [-see Eq. (5)] 
and that 2 = (2W) 1/2 for small W we can write (A1) in the form 

C*(n ) ~ ( - l)n(6/n2) f dq(o + ) dq(o T M  ) cos [(2/2)(q(o + ) -  q(o ))] 

x cos[(2/2) q(,+/_ ( _  1)-(2/2)(q(o +)_  q(o-))] (A3) 

The integral can be further simplified by taking advantage of time reversal 
and reflection symmetry which allows us to restrict the region of 
integration to 

0<q~+)<q(o I (A4) 

if the integral is then multiplied by a factor of 8. This restriction 
automatically ensures that the sequence of collisions remains near a single 
vertex. Since q(~+) grows exponentially, the inequality (A4) restricts q(o +) to 
be much smaller than q(0-) and, through (A2), yields 

q(o-) = -200/2 (A5) 

in the limit of W ~  0 and n-~ oe. Since 0o > -7c/2 we can now write C*(n) 
in the form of a definite integral 

C*(n)~( -1)n(12 / zc )2e-n; .~ /2  fO: dx dy cos2(x) cos(y) (A6) 
~0 
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where we have made the change of  variables x = 2q(0 )/2 and y = 2q~0 + ~en~/2. 
This integral is easily evaluated, with the result that  

C*(n) ~ ( - 1 )n(4/~) 2e n;. (A7) 

Compar ing  Eq. (A7) to Eq. (11) we see that  

C = 4/~ ( a s )  
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